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Computer simulation, of effects of the pore size 
distribution on the kinetics of pressure-assisted 
final-stage densification 

A L A N  J. M A R K W O R T H ,  J. KEVIN M c C O Y  
Battelle, 505 King Avenue, Columbus, Ohio 43201-2693, USA 

Most theoretical treatments of pressure-assisted densification of porous solids assume a single 
size for all pores. We remove this assumption:and consider a distribution of pore sizes. Dissol- 
ution of intragranular pores by volume diffusion and dissolution of intergranular pores by 
grain-boundary diffusion are both treated. The evolution with time of pore size distributions is 
calculated for distributions that are initially described by log-normal and Weibull functions, 
and differences in predicted behaviours are discussed. The pore size distribution is then related 
to two important quantities: porosity and number of pores per unit volume. The assumption of 
a distribution of pore sizes is found to avoid certain unrealistic predictions obtained from 
models with a single pore size, such as abrupt disappearance of all pores and rapid approach 
to full density. 

1. I n t r o d u c t i o n  
It is frequently observed in studies of densification 
that full density is difficult to achieve. This is in direct 
conflict with predictions of rapid and complete den- 
sification derived from theoretical models ofdensifica- 
tion by diffusion. In this paper, we show that the 
models can be brought into agreement with experience 
by consideration of the effects of a distribution of pore 
sizes. 

The importance of size-distribution effects in con- 
siderations of the evolution of a discrete second-phase 
species has long been recognized. The porosity within 
a solid body can be regarded as a particular type 
of second phase, and its variation with time, result- 
ing from surface-energy and applied-pressure driving 
forces, can be treated as a type of phase transforma- 
tion. In this case as well, size-distribution effects can 
play an important role, for example in considerations 
of the manner in which the overall volume fraction of 
porosity varies with time. 

Presented below are the results of a modelling study 
of the dissolution kinetics of a distribution of discrete 
(i.e. non-overlapping), spherical pores contained 
within a solid body. Both intragranular and inter- 
granular pores are considered, using well-established 
expressions for the size-dependent rate of pore dis- 
solution resulting from volume diffusion and grain- 
boundary diffusion, respectively, of vacancies away 
from the pore surface. The evolution with time of the 
pore size distribution is calculated, starting from 
various assumed initial distributions, and from this 
the corresponding variation of the overall porosity of 
the solid is calculated and related to size-distribution 
effects. 

Because of the fact that both pore-surface-energy 
and applied-pressure driving forces are considered, 
the problem is not analytically tractable for either 
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intragranular or intergranular pores. Consequently, 
solutions are generated numerically. 

It is clear that the assumption of a system of discrete 
pores limits our consideration to a solid for which the 
amount of porosity is relatively low. This corresponds 
to what is commonly referred to as the "final stage" of 
densification. A quantitative evaluation of the prob- 
ability that a given pore is actually discrete can be 
carried out, as, for example, has been done [1] for the 
case of a uniform size distribution of spheres distri- 
buted at random within three-dimensional space. 

2. Pore-dissolut ion models 
Over the years, many investigators have developed 
models for the growth and dissolution of  pores con- 
tained within a solid body. (Actually, models for pore 
growth can be used to describe dissolution as well, if 
appropriate modification is made of the applied-stress 
term in the growth-rate expression, as has been dis- 
cussed by Greenwood [2].) In addition, a variety of 
kinetic mechanisms has been considered. For purposes 
of the present analysis, relatively simple models for 
pore dissolution are used which nevertheless serve well 
to illustrate the manner in which size-distribution effects 
can influence the overall kinetics of porosity reduction. 

2.1. Intragranular pores 
For the volume-diffusion-controlled dissolution of an 
isolated, spherical, intragranular pore (i.e. neighbor- 
ing pores are assumed not to influence one another), 
one can derive an expression for the rate of pore dis- 
solution by assuming that the vacancy-concentration 
field within the solid outside the pore satisfies the 
Laplace equation. One thus obtains (e.g. [3, 4]), 

d-'-t = k T R  P + (1) 
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where R is the pore radius at time t; Q, D~ and ? are the 
atomic volume, the volume self-diffusivity and the 
surface energy of the solid, respectively; P is the exter- 
nally applied pressure, k is Boltzmann's constant and 
T is the absolute temperature. Three assumptions 
inherent in Equation 1 are (a) that the vacancy super- 
saturation in the lattice is zero, (b) that the "effective" 
applied pressure inside the solid is unaffected by the 
presence of the porosity, and (c) that no gases exist 
inside the pores. Relaxation of assumption (a) has 
been considered by Geguzin and Lifshits [3] and 
others; relaxation of (b) and (c) has been discussed by 
Markworth [4] and others. 

In order to simplify the analysis which follows, we 
re-express Equation 1 in terms of dimensionless vari- 
ables, i.e. a pore-size parameter O and a time para- 
meter z defined as 

0 -= R (2) 

T \472kT,i  t (3) 

in terms of which Equation 1 assumes the much sim- 
pler form 

dR ~(1  + ~) (4) 
d~ 

2.2. Intergranular pores 
A number of models have been developed with which 
to describe the grain-boundary diffusion-controlled 
and volume-diffusion-controlled growth or dissolu- 
tion of an intergranular pore. For the present analysis, 
we consider an i~olated spherical pore situated on a 
planar grain boundary and dissolving by the flow of 
vacancies away from the pore through the boundary. 
To describe this situation, we apply a model for grain- 
boundary-diffusion controlled growth of an inter- 
granular pore developed by Trinkaus [5]. The above- 
noted modification suggested by Greenwood [2] is 
used to adapt the model to pore-dissolution kinetics. 
One thus obtains 

d___RR = QDb6 ( P + - ~ - )  (5) 
dt 2kTR 2 

where Db is the grain-boundary self-diffusivity, fi is the 
effective thickness of the grain boundary, and all other 
symbols are as defined for Equation 1. Again, it is 
assumed that the "effective" applied pressure inside 
the solid is unaffected by the presence of porosity and 
that no gases exist inside the pores. Effects of gases 
inside the pores could be considered [5] and are analo- 
gous the corresponding effects for intragranular pores. 

It is again convenient to express Equation 5 in terms 
of dimensionless variables. We use the same size and 
time parameters, 0 and z, given by Equations 2 and 3, 
but we define a new dimensionless factor, =, as 

= = (6) 
4? Dv 

and obtain the following simpler form for Equation 5: 

d~ = o 2 ] + (7) 
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Figure I Normalized shrinkage rate as a function of  normalized 
pore radius for two types of  pores. ( ) intragranular pores, ( - - - )  
intergranular pores. 

The rate of pore shrinkage -d0 /dx  as a function of 
pore radius 0 is plotted in Fig. 1 for both intergranular 
and intragranular pores, as calculated from Equations 
4 and 7 with a value of ¢ = 1. From Fig. 1, it can be 
seen that the rate of pore shrinkage decreases as pore 
radius increases, and that the dependence of shrinkage 
rate on pore size is stronger for intergranular pores 
than it is for intragranular pores. Note that the shrink- 
age rate for intergranular pores is dependent on =, and 
that the corresponding curve in Fig. 1 would be raised 
or lowered if a different value of = had been chosen. 

2.3. Other pore-d isso lut ion  models  
Clearly, pore-dissolution models other than those rep- 
resented by Equations 4 and 7 could have been used. 
These two particular models were chosen because 
they are particularly amenable to the size-distribution 
analyses developed below while still containing a des- 
cription of some essential features of the physics of the 
respective dissolution processes. 

One interesting case not mentioned above is the 
oft-quoted model of Hull and Rimmer [6] for the 
stress-induced growth of grain-boundary voids. Using 
their model, and including only applied-pressure and 
surface-energy effects as driving forces for pore dis- 
solution, one obtains an expression equivalent to 
Equation 4 as the dimensionless representation, 
noting that Equation 4 was derived for a model of 
intragranular pores. The only difference would be the 
replacement of Dv in Equation I with/~,5/2a where a 
is the mean separation between pores. Consequently, 
the analysis of intragranular porosity based on 
Equation 1 is mathematically equivalent to that of  
intergranular porosity based on the HuU-Rimmer 
model [6]. It should be noted however, that important 
corrections to the Hull-Rimmer model have been 
made, e.g. by Weertman [7]. 

3. Size-distr ibut ion kinetics 
3.1. Evolution of the pore size distribution 
We define the size-distribution function for a sys- 
tem of pores as f (R ,  t), such that f (R ,  t)dR is the 
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concentration of pores, at time t, having radius within 
the range R to R + dR. Clearly, it is assumed in 
this definition that the size distribution exhibits no 
spatial dependence, on the average. Assuming that no 
"sources" or "sinks" for pores exist, one can show 
that the function f satisfies the following continuity 
relation: 

_ O 
otOf+-~(vf) = 0 (8) 

where v is a function that describes the rate at which 
a given pore, which can be considered as a point exist- 
ing in a one-dimensional pore-radius space, moves 
through that space. (Obviously, the definition of v is 
equivalent to dR/dt which is given in Equations 1 and 
5 for the two models under consideration here.) 
Expressing Equation 8 in terms of the dimensionless 
parameters e and T, 

Of + d  
O--~ ~q (vf) = 0 (9) 

where now f(e, T)de is the concentration of pores, 
at time x having radius within the range e to e + de, 
and v is now equivalent to the "velocity", de/dT, in 
e-space. 

The "flux" of pores crossing a given point of the 
one-dimensional e-space is, in general, equal t o  
v(e, v)f(e, z). For the pore-dissolution models under 
consideration here~ v has explicit dependence only 
upon e (see Equations 4 and 7). 

Let us examine the behaviour of the pore flux with 
respect to a moving coordinate frame in our one- 
dimensional e-space. Specifically, let e' be a coordi- 
nate which moves along the e-axis at the same rate as 
a pore having instantaneous size e. Hence, e' is given 
through the relation 

If ' de 
- % = (10) 

o v(e) 

where e0 is the size of the pore at some given initial 
time z0 and where we again take v to depend only 
upon e. From Equation 10 we obtain 

de' 
d---( = v(e') (1 l) 

It now follows that 

d-~ k de' f(e', z) 

de' O f ( e , , ~ ) ]  (12) + v(e')[O--~f(e',z)--d-~z+ 

Combining Equations 11 and 12, 

d 
d--~ [v(e')f(e'" T)] = v(e') f(e', T) 

6 0 , ] 
+ v(e') ~ f(e', ~) + ~ f (e ,  r ) l  (13) 

Now, the continuity equation, Equation 9, must also 
be satisfied with respect to the moving coordinate 
system, in which case the sum of the terms within 
brackets on the right hand side of Equation 13 is zero. 

Consequently, 

d 
d-~ [v(e')f(e', x)] = 0 (14) 

An alternative way of expressing Equation 14 is the 
following: 

v(e) f(e, x) = V(eo) f(eo, %) (15) 

where e (dropping the prime symbol) is understood to 
be the size of a pore, at time z, that had size e0 at an 
earlier time T0. Taking T0 = 0 and g ( e o )  - f(e0, 0), 
we obtain 

f(e, z) = [ v(e°)] g(e0) (16) 
L v(e) J 

Equation 16 can be used to relate the size distribution 
at time T = 0 to that at some late time z > 0. An 
alternative derivation of Equation 15 is presented in 
the Appendix. 

In order to apply Equation 16 to cases of interest 
here, one can use Equation 10 (again, and from now 
on, dropping the prime symbol) together with the 
given expressions for v(e). This can be done in closed 
form for the models under consideration here. In 
particular, substituting the right-hand side of Equa- 
tion 4 for v(e) into Equation 10 and integrating, one 
obtains the following expression for intragranular 
pores: 

. (1 + (17) z 1(e0 - e)(& + e - 2) + In \ 1 - - ~ J  

Likewise, substituting the right-hand side of Equation 
7 for v(e) into Equation 10 and integrating, one 
obtains the following expression for intergranular 
pores: 

CZ'C : 
1 3 _ _  ~(eo e ~ ) + ( e o - e )  

(1 + e) (18) --½(eo 2 -- e 2) + In \l---~Q0/ 

Unfortunately, for given values of z and e0, the value 
of e can be calculated from either Equation 17 or 18 
only through=some numerical procedure. Given this 
fact, however;, the problem of calculating the evol- 
ution of the pore size distribution is, in principle, 
solved. 

The above analysis can be cast in somewhat simpler 
form by taking 

e0 = e + A (19) 

where A > 0 since the pores are dissolving. In this 
form, Equations 16, 17 and 18, respectively, become 

v(e + A) 
f(e, z) = v(e) g(e + A) (20) 

T = A ( e - I  + ½ a )  

+ I n (  1 + e + A )  1 + 0  (21) 

=z = A(02 + eA + }N + 1 - e -  ½A) 

- In (.1 +e l  + e  + A) (22) 
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For given 0 and z, Equations 21 and 22 can be solved 
numerically for the corresponding values of A for 
intragranular and intergranular pores, respectively. 

3.2. Evolution of distr ibut ion-funct ion 
moments 

Properties of physical interest are related to moments 
of the size-distribution function, rather than to the 
distribution function per se, defining the ith algebraic 
moment (i.e. the ith moment about 0 = 0) as 

= f :  o'f(Q, 'r) do (23) M,(x) 

For example, M0(z) is the net concentration of pores 
withi~ th~ol id ,  and the volume fraction occupied by 
porosity is linearly proportional to M3(x). 

There are different ways in which Mi(~) can be cal- 
culated (e.g. [8, 9]). As discussed below, the approach 
used here is to calculate f(Q, z) using a general 
approach described above, and then numerically inte- 
grating, using Equation 23 as a basis, to determine the 
moments of interest. 

One case is of particular interest, namely that 
':involving M0. It can easily be shown that an alter- 

native expression for M0 is 

f2 M0(z) = g(0) do (24) 

where the quantity A0 in Equation 24 is the value of A, 
obtained from Equation 21 or 22, corresponding to 
,o = 0. Thus, for intragranular and intergranular 
pores, respectively, 

z = A0(½A0 - 1) + In (1 + Ao) (25 ) 

1 2 _ _  ~¢z = A0(~A o ½A 0 + 1 ) -  In(1 + A0).(26) 

The values of M0 can be calculated, for a given value 
of z, simply by numerically determining the pertinent 
value of A0 from Equation 25 or 26, and then perform- 
ing the integration indicated in Equation 24. The 
result obtained by this approach should yield the same 
result as that obtained from the approach previously 
described based on the use of Equation 23. In fact, . 
comparison of the values of M 0 calculated using the .  
two different approaches would serve as a useful check 
of the accuracy of the numerical procedures and was 
indeed used for this purpose in the exami~les described 
below. 

4. Application to specif ic  examples  
The methods of calculating size-distrubution kinetics 
described above may be applied to a wide variety of 
inital pore-size distributions. We have applied them to 
a Weibull distribution 

g(Q) = morn -1 exp ( - 0 " )  (25) 

with m = 2, 2.5, and 3, and to a log-normal distribu- 
tion 

I ( t i n  ~/b)]2~ (26) 
g(o) = (27z) l /2co  exp -- 2c" ) 

where we have taken b = 0.8 and c = 0.5. As will be 
seen from the figures below, these distributions are 
generally similar in appearance. The most important 
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Figure 2 Pore size distribution function for intragranular pores at 
several times. Initial distribution is log-normal. 

difference among them is that the log-normal distribu- 
tion has a long large-radius tail, while the large-radius 
tails of the Weibull distrubutions are smaller and 
decrease with increasing m. 

All of these functions are normalized, that is they 
have M0 = 1. However, due to the differences between 
the functions, it is generally not possible to normalize 
the third moments simultaneously. For the Weibult 
distributions, we have /14"3 = F(I + 3/m) while for 
the log-normal distribution, M3 = b 3 exp (9c2/2). 

Ir~ Figs 2 to 4 we present plots of the pore size 
distribution function for selected times and various 
initial disfributions as calculated using Equation 4 for 
the kinetics of dissolution of intragranular pores. 
Results for the Weibull distribution with m = 2.5 are 
not plotted but were intermediate between the results 
for m = 2 and m = 3. From Fig. 2, it will be noted 
that the position of the peak of the distribution func- 
tion moves toward larger radii as time progresses, A 
similar but smaller effect can be seen in Fig. 3, while 
in Fig. 4, the position of the peak clearly shifts toward 
smaller radii. This behaviour is in marked contrast to 
that of standard models in which all pores are the 
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Figure 3 Pore size distribution function for intragranular pores at 
several times. Initial distribution is Weibull with m = 2. 
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Figure 6 Pore size distribution function for intergranular pores at 
several times. Initial distribution is Weibull with m = 2. 

same size and all pores shrink together: for densifica- 
tion to occur, the pore radius must shrink. If there is 
a distribution of pore sizes, however, the peak of the 
distribution may .move in either direction, depending 
on the shape of the distribution and the velocity func- 
tion. The influence of the velocity function may be 
seen in Figs 5 to 7, which differ from Figs 2 to 4 only 
in that the velocity for intergranular pores was used. 
For all calculations with intergranular pores we took 

= 1. As seen in Figs 5 to 7, the peak shifts strongly 
to higher radii for the log-normal distribution, some- 
what less strongly for the Weibull distribution with 
m = 2, and only slightly for the Weibull distribu- 
tion with m = 3. It is clear from the figures that, 
qualitatively, if the magnitude of the velocity func- 
tion decreases strongly with increasing radius and the 
initial distribution has a long large-radius tail, the 
peak of the distribution function will shift toward the 
right, since the small pores disappear quickly, leaving 
the larger pores almost unchanged. Conversely, if the 
velocity function depends weakly on radius and the 
initial distribution is narrow, the pores will shrink 
together and the peak of the distribution will move to 
the left. 
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Figure 5 Pore size distribution function for intergranular pores at 
several times. Initial distribution is log-normal. 
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While the pore size distribution functions would be 
difficult to determine experimentally, two quantities 
that are more easily measured are the number of pores 
per unit volume and the porosity. These two quantities 
are proportional to M0 and M3, respectively. The 
moments are plotted as functions of time for all four 
distributions and both velocity functions in Figs 8 
to 11. For comparison, we have also plotted the third 
moments for a distribution in which all pores are the 
same size. An initial pore radius of Q = (3/4r0 I/3 was 
used. 

If it is assumed that all pores have the same size, all 
pores vanish simultaneously, and M0 changes dis- 
continuously. A more realistic picture is seen in Figs 8 
and 10: the number of pores gradually decreases 
toward zero. At times up to z = 0.2, the number of 
pores decreases at comparable rates for all four distri- 
butions, reflecting the general similarity of the central 
portion of the distributions. By z = 1, however, the 
distributions are dominated by what was originally 
the large-radius tail of the distribution, and, for both 
velocity functions, the log-normal distribution has the 
largest number of pores, followed by the Weibull 
distributions in order of increasing m. 
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Figure 7 Pore size distribution function for intergranular pores at 
several times. Initial distribution is Weibull with m = 3. 
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Figure 8 Zeroth moment  of  the pore distribution function (propor- 
tional to number  of  pores) as a function of  time for intragranular  
pores with four initial pore size distributions: ( ) log-non~al;  
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Figure 10 Zcroth moment of the pore distribution function (propor- 
tional to number  of  pores) as a function of  time for intragranular  
pores with four initial pore size distributions: ( ) log-normal; 
( - - - )  Weibull, m = 2; ( - . - )  Weibull, m = 2.5; ( - - - - )  Weibull, 
m = 3 .  

From Figs 9 and i !, we note again the unrealistic 
results obtained by assuming a single pore size: densi- 
fication proceeds rapidly to completion. At short 
times, the rates of change of the third moment as 
obtained by assuming a distribution of pore sizes 
agree relatively well with those for a single pore size 
and with each other. However, the results soon begin 
to diverge. For a single size of intragranular pores, it 
is predicted that all porosity will vanish at z = 0.247, 
but all the calculations with a distribution of sizes give 
significant remaining porosity at this time. The con- 
trast is even stronger in the case of intergranular 
pores. The calculation with a single pore size shows all 
porosity vanishing at z = 0.196, but, for the log- 
normal distribution and Weibull distribution with 
m = 2, more than half of the original porosity 
remains. For both velocity functions, the calculations 
on a log-normal distribution give significant remain- 
ing porosity at z = 1. 
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Figure 9 Third moment  of  the pore distribution function (propor- 
tional to porosity) as a function of  time for intragranular  pores with 
five initial pore size distributions: ( . ) log-non '~ l ;  ( - - - )  Weibull, 
m -- 2; ( - . - )  Weibull, m = 2.5; ( - - - - )  Weibull, rn = 3; ( " . )  single 
pore size. 

5. Discussion 
Size-distribution effects associated with pores in solids 
have been studied by other investigators as well. For 
example, Tomandl [10] considered pore shrinkage 
resulting from sintering without any externally applied 
pressure. The expression he used to describe the rate 
of pore dissolution by diffusion along grain bound- 
aries was 

dR = cp (27) 
d t  R 2 

where Cp is a parameter that is dependent upon tem- 
perature. Clearly, Equation 27 is mathematically 
equivalent to Equation I if P is set equal to zero in the 
latter. They then differ only in the form of the coef- 
ficient of the R -2 term. For this limiting case, the 
time-dependent size-distribution function can be 
derived in closed form, as Tomandl hasshown [10]. In 
other studies [11, 12], the evolution of a cavity size 
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Figure 11 Third moment  of  the pore distribution function (propor- 
tional to porosity) as a function of  time for intragranular  pores with 
five initial pore size distributions: ( ) log-normal; ( - - - )  Weibull, 
m = 2; ( - . - )  Weibull, m = 2.5; ( - - - - )  Weibull, m = 3; ( . . . )  single 
pore size. 
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distribution under an applied tensile stress was stud- 
ied. The rate of change of pore size was here described 
by an expression equivalent to our Equation 5, with P 
replaced with - a, where a is the tensile stress at and 
perpendicular to the grain boundary. It was assumed 
that tr is equal to the externally applied tensile stress, 
an assumption which (as was pointed out [12]) is riot 
generally valid. The evolution of the cavity size distri- 
bution was evaluated numerically using an approach 
Chat was analogous to that used here. 

It is~a,co/fimon exl)erience in sintering and hot 
iso6tatic pressing to observe ~ that it is difficult to 
achieve full,density. ThiS-is in marked contrast to 
the predictions of rapid and c0mplcte dcnsification 
obtained from standard modcls derived under the 
assumptions of diffusional control and a single pore 
size. Wc havc shown that more realistic results may bc 
obtaincd by assuming that a distribution of pore sizes 
exists in thc material. Wc have also shown that the 
most likely pore size can increase cvcn as dcnsification 
proceeds and all pores shrink. 

It is beyond the scope of this paper to relatc pore 
size distributions to particle size distributions and 
particle packings. However, it is clear from this work 
that bchaviour in the limit of long time (and high 
density) is controlled by large pores. It is expcctcd that 
these large pores would be found near large initial 
particles or fully dcnsified agglomerates. 

Appendix; alternative derivation of 
E q u a t i o n  1 5 

In this Appendix we present an alternative derivation 
of Equation 15, one that is perhaps simpler than that 
developed in thc text, but which nevertheless is math- 
ematically rigorous. 

Consider a pore that has size e0 at time % and size 
0 t> 0 at some later time t. The relationship between 
R and t is given by Equation 10 (dropping the prime 
symbol in Equation 10). Likewise, consider another 
pore that has size Ro + dR0 at time t0 and size q + dR 
at time z. For this case, Equation 10 becomes 

f~+dQ dR (AI) 
t - t o  = JQo+~ov(q) 

Subtracting Equation 10 from Equation A1, 

0 = [ '+~ dR l 'e dR (A2) 
J~o+"oo v(R) ~o v(R) 

or 

f0+d0 dQ ,~ dQ b (A3) 

For infinitesimally small d00 and d0, Equation A3 can 
bc expressed as 

d0 d00 
- (A4) 

v(o) V(Oo) 
The concentration of pores at time % within the 

interval q0 to 00 + dQo isf(0o, zo)de0 and that at time 
t within the interval 0 to 0 + dQ isf(Q, t)d0. Clearly, 
these must be equal, i.e. 

f(0, z)d0 = f(0o, to)d00 (AS) 

Eliminating d0 and d0o from Equation A5 by applica- 
tion of Equation A4, wc find that 

v(0)f(0, t) = V(Ro)f(0o, %) (A6) 

and we see that Equations A6 and 15 are identical. 
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